COMMUNICATIONS TO THE EDITOR

Roridin L, M and Verrucarin M, New Macrocyclic Trichothecene Group Antitumor Antibiotics, from *Myrothecium verrucaria*

Sir:

In the course of our screening to find antitumor antibiotics from microorganisms, we have isolated novel macrocyclic trichothecene antibiotics¹⁾, roridin L (1), M (2) and verrucarin M (3) from the culture broth of *Myrothecium verrucaria*. Here we report the fermentation, purification, structure elucidation and biological activities of 1, 2 and 3.

The producing strain was identified as *Myrothesium verrucaria* (Alb. & Schw.) Ditm.: Fr. based on the dark green fusiform conidia $(5.5 \sim 8.0 \times 2.5 \sim 3.0 \,\mu\text{m})$ born on the sporodochia without setae²⁾. It was isolated from soil sample collected at Takasaki-shi in Gunma prefecture. The fermentation was carried out in a 500-ml Erlenmeyer flask containing 100 ml medium with following composition: corn steep liquor 1.5%, soluble starch 2.0%, corn meal 0.1%, soybean meal 0.4%, glucose 0.25%, (NH₄)₂SO₄ 0.4%, KH₂PO₄ 0.03%, CaCO₃ 0.6% and agar 0.1%. The pH of the medium was adjusted to 6.7 before sterilization. The seed culture was inoculated to the flasks, and the fermentation was carried out at 27°C for 7 days on a rotary shaker.

1, 2 and 3 were isolated according to the scheme as

shown in Fig. 2. In brief, the fermentation broth (10 liters) were centrifuged to give a mycelium cake and supernatants. A mycelium cake was extracted with acetone (3 liters) and the extract was filtered and concentrated *in vacuo* to yield an aqueous solution. An aqueous solution and supernatants were mixed and extracted twice with EtOAc. The organic layer was dehydrated over anhydrous Na₂SO₄ and then concentrated *in vacuo*. The residue was applied to a silica gel column (Silica gel 60, 5×50 cm) developed with CHCl₃-MeOH (80:1). The active fractions were further chromatographed on a HW40 column (2×50 cm) with CHCl₃-MeOH (1:1) and then purified by preparative HPLC (YMC ODS-AM323, 70% MeOH). The active fractions were pooled and concentrated *in vacuo* to afford 1 (5.6 mg), 2 (2.2 mg) and 3 (2.5 mg) as colorless powders.

The physico-chemical properties of 1, 2 and 3 were summarized in Table 1. The molecular formula of 1 was determined to be $C_{29}H_{38}O_9$ by HRFAB-MS. The ¹H and ¹³C NMR spectrum of 1 showed that 1 was closely similar to roridin E³⁾. Analyses of ¹H and ¹³C NMR including 2D NMR spectra (DQF COSY, C-H COSY and HMBC) revealed that the macrocyclic chain (C-1'~C-14') in 1 was identical with roridin E including the geometries of C-2' (*E*, C-12' (δ_C 19.5)^{3,4}), C-7' (*E*, $J_{7',8'}$ =15.5 Hz) and C-9' (*Z*, $J_{9',10'}$ =11.0 Hz). In while, the methylene singal at C-3 (δ_H 2.04, 2.53, δ_C 35.8) in roridin E was disappered and a methyne signal (δ_H 4.22, δ_C 78.2) coupled with H-2 (δ_H 3.77) and H-4 (δ_H 6.02) (DQF COSY) was appeared in 1.

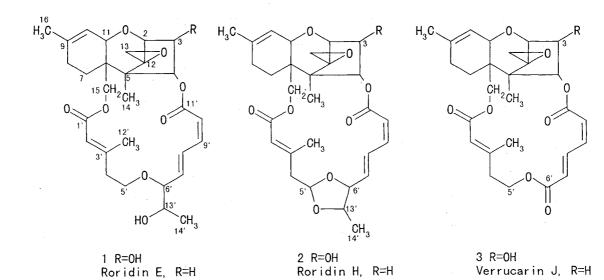
Table 1. Physico-chemical propeties of roridin L (1), roridin M (2) and vertucarin M (3).

	1	2	3
Appearance	Colorless powder	Colorless powder	Colorless powder
mp(℃, dec)	138-140	180-182	210-212
Molecular formula	$C_{29}H_{38}O_9$	$C_{29}H_{36}O_{9}$	$C_{27}H_{30}O_9$
HRFAB-MS Calcd:	531.2594	529.2438	501.2125
Found:	531.2581 (M+H) ⁺	529.2433(M+H)*	501.2108(M+H) ⁺
$UV\lambda_{max}^{McOH}(\epsilon)$	224(25,000)	224(24,200)	262(23,000)
	263(19,500)	263(19,100)	
IR v (KBr)cm ⁻¹	3450,1720,1650	3460,1715,1645	3460,1710,1650

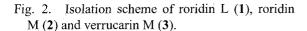
	1		2	······································	3	
	¹³ C	¹ H	¹³ C	'Η	¹³ C	'H
2	79.1	3.77m	77.3	3.66d4.9	79.1	3.66d4.9
3	78.1	4.22m	77.2	4.40m	77.2	4.40m
4	84.3	6.02d3.1	82.4	5.61d3.6	83.8	5.71d3.6
5	47.6		49.0		47.6	
6	43.0		43.8		43.7	
7a	22.9	1.47m	20.9	1.75m	20.9	1.74m
7b		2.01m		2.01m		2.01m
8a	27.5	2.01m	27.6	2.00m	27.6	2.01m
8b		2.01m		2.00m		2.01m
9	139.7		140,4		139.2	
10	119.0	5.69d4.9	118.6	5.53d4.5	118.7	5.52d5.5
11	68.0	4.50d4.9	68.4	4.12 ^{c)}	68.1	4.17d5.5
12	64.7		64.6		64.5	
13a	47.6	2.77d4.0	47.2	2.76d4.3	47.3	2.77d3.7
13b		3.08d4.0		3.04d4.3		3.04d3.7
14	6.3	0.80	7.1	0.82	6.8	0.78
15a	64.8	3.97d12.6	63.2	4.12d12.1	63.4	3.99d13.8
15b		4.17d12.6	*	4.26d12.1		4.36d13.8
16	23.1	1.62	23.3	1.70	23.3	1.70
1'	167.8 ^{b)}		165.9 ^{b)}		166.2 ^{b)}	
2'	116.5	5.61	118.8	5.67	119.0	5.79
3'	158.1		155.5		156.8	
4'a	39.2	2.23m	46.9	2.29dd12.3,7.3	40.1	2,48m
4'b		2.55m		2.63d12.3		2.48m
5'a	65.9	3.43m	101.1	5.49dd7.3,1.0	60.5	4.12m
5'b		3.71 ^{c)}				4.39m
6'	83.0	3.71 ^{c)}	81.8	4.05br.d8.6	166.0 ^{b)}	
7'	135.8	5.68dd15.5,7.9	134.9	5.94d15.3	127.4	5.98d15.3
8'	132.0	7.58dd15.5,11.0	125.9	7.56dd15.3,11.0	138.9	7.95dd15.3,11.0
9'	142.0	6.64dd11.0,11.0	142.4	6.54dd11.0,11.0	139.2	6.66dd11.0,11.0
10'	119.0	5.90d11.0	118.9	5.84d11.0	125.4	6.13d11.0
11'	165.8 ^{b)}		166.7 ⁵⁾		165.4 ^{b)}	
12'	19.5	2.17d1.2	20.9	2.25	17.2	2.23d1.2
13'	69.4	3.71a	76.6	3.63m		
14'	18.5	1.15d6.7	16.6	1.31d5.4		

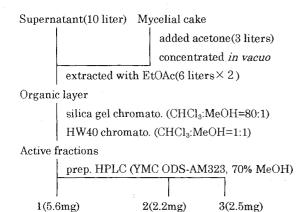
Table 2. ${}^{13}C$ and ${}^{1}H$ NMR data of roridin L (1), M (2) and vertucarin M (3)^{a)}.

a) Taken in CDCl₃


b) The assignments may be interchanged.

c) Resonance in one-dimentional spectra obscured by overlapping signals.


Considering the molecular formula of 1 was roridin E plus one oxygen atom, 1 was deduced to be 3-hydroxyl roridin E. The planer structure of 1 was shown in Fig. 1.


The ¹H and ¹³C NMR spectrum of 2 were closely

resembled to those of 1. Especially, the signals due to trichothecene ring were completely identical with 1. Detailed comparison of ¹H and ¹³C NMR data between 2 and roridin H^{50} indicated that the macrocyclic chain (C-1'~C-14') of

Fig. 1. Total structures of roridin L (1), roridin M (2) and verrucarin M (3).

trichothecene possessing a hydroxyl group at C-3 position. Further experiments to determine the stereochemistry of 1, 2 and 3 were in progress.

1, 2 and 3 were tested for their *in vitro* cytotoxicity. IC_{50} values against P388 (murine leukemia) were 1.6, 4.6 and 4.8 ng/ml, respectively. Since some trichothecenes (PD113,325 and PD113,326) were shown to possess *in vivo* antitumor activity against P388 lymphocytic leukemia model⁷, 1, 2 and 3 were also expected to be new candidates for antitumor agents. Further biological studies are in progress.

Yasunobu Murakami* Toru Okuda[†] Kazutoshi Shindo

Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Takasaki, Gunma 370-1295, Japan [†] Applied Life Science Research, Tamagawa University,

Machida, Tokyo 194-8610, Japan

(Received July 10, 2001)

References

- TAMM, CH: The antibiotic complex of the vertucarins and roridins. Fortschr. Chem. Org. Naturst. 31: 63~117, 1974
- TULLOCH, M.: The genus *Myrothecium* Tode ex Fr. *In* Mycol. Pap. *Ed.*, M. TULLOCH *et al.*, pp. 42~50, CABI

them were completely idenitical. Thus, the planar structure of 2 (3-hydroxy roridin H) was determined as shown in Fig. 1.

In the ¹H and ¹³C NMR spectrum of **3**, the signals due to trichothecene ring in **1** was completely preserved. Analyses of ¹H and ¹³C NMR revealed that the macrocyclic chain (C- $1'\sim$ C-12') of **3** was idenitical to that of verrucarin J^{1,6} including the geometries. From these finding, **3** was determined to be 3-hydroxy verrucarin J (Fig. 1).

1, 2 and 3 were the first examples of macrocyclic

Bioscienece UK Centre, Egham, Surrey, 1972

- 3) MATSUMOTO, M.; H. MINATO, K. TORI & M. UEYAMA: Structures of isororidin E, epoxyisororidin E, and epoxyand diepoxyroridin H, new metabolites isolated from cylindrocarpon species determined by carbon-13 and hydrogen-1 NMR spectroscopy. Tetrahedron Lett. 47: 4093~4096, 1977
- JARVIS, B. B.; G. P. STAHLY, G. PAVANASASIVAM, J. O. MIDIWO, T. DESILVA, C. E. HOLMLUND, E. P. MAZZOLA & R. F. GEOGHEGAN, Jr.: Isolation and characterization of the trichoverroids and new roridins and vertucarins. J.

Org. Chem. 47: 1117~1124, 1982

- JARVIS, B. B.; G. P. STAHLY & G. PAVANASASIVAM: Structure of roridin J, a new macrocyclic trichothecene from *Myrothecium verrucaria*. J. Antibiotics 33: 256~258, 1980
- BREITENSTEIN, W. & CH. TAMM: Partial synthesis of tetrahydroverrucarin J. Helv. Chim. Acta 61: 1975~ 1983, 1978
- 7) SMITKA, T. A.; R. H. BUNGE, R. J. BLOEM & J. C. FRENCH: Two new trichothecenes, PD113,325 and PD113,326. J. Antibiotics 37: 825~828, 1984